BAB II

TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

Berikut penelitian-penelitian terdahudu yang digunakan sebagai bahan pembelajaran untuk menyusun tugas akhir ini :

Tabel 2. 1 Penelitian Terdahulu.

	Nama Peneliti Dan Tahun	Topik	Latar Belakang	Metode penelitian	Hasil
	Abdawal	Analisis	Tundaan lalu	1.Pendekatan	Hasil analisis
1 -	pratama	Biaya	lintas di Jalan		menjelaskan
	nasution,	Perjalana	I Gusti		bahwa kinerja
(2	(2012)	n Akibat	Ngurah Rai	3.Pengumpula	ruas jalan
		Tundaan	disebabkan	n Data? Data	jalan I Gusti
		Lalu	oleh berbagai	Primer Data	Ngurah pada
		Lintas	hambatan,	diperoleh	Segmen 1
		(Studi	termasuk	melalui survei	menghasilkan
		Kasus :	pengaruh Alat	lapangan	tingkat
		Ruas	Pemberi	(LHR)	pelayanan
		Jalan Dari	Isyarat Lalu	Data sekunder	jalan B
		Persimpa	Lintas	Meliputi data	dimana arus
		ngan Jl. I	(APILL). Hal	dari Badan	stabil,
		Gusti	ini	Pusat Statistik	kecepatan
		Ngurah	mengakibatka	(BPS)	mulai
		Rai – Jl.	n penurunan	4. Analisis	dibatasi oleh
		Kampus	kinerja ruas	Kinerja Ruas	kondisi lalu
		Udayana	jalan, yang	Jalan	lintas,
		Sampai	berdampak	5. Analisis	pengemudi
		Persimpa	pada nilai	Biaya	memiliki
			*	_	
		_			
			•		untuk memilih
		-	_ -		
				*	
		ngan Jl. I Gusti Ngurah Rai – Jl. Perum	waktu dan biaya operasional kendaraan. Penelitian ini	Perjalanan 6. Evaluasi dan Interpretasi Data	

		Taman	bertujuan		kecepatan,
			untuk		-
		Griya)			sedangkan
			menganalisis		pada segmen 2
			biaya		menghasilkan
			perjalanan		tingkat
			akibat tundaan		pelayanan C
			lalu lintas		dengan
			serta		kondisi
			mengevaluasi		lapangan arus
			kinerja ruas		stabil tetapi
			jalan dari		kecepatan
			persimpangan		bergerak dan
			Jl. Kampus		gerak
			Udayana		kendaraan
			hingga		dibatasi oleh
			persimpangan		kondisi lalu
			Jl. Perum		lintas,
			Taman Griya.		pengemudi
			Tulliuli Gilyu.		dibatasi dalam
					memilih
					kecepatan.
					кесератап.
2	M. Jazir	Analisis	Indonesia,	1.Pengumpula	1.Derajat
	Alkas	Biaya	sebagai	n Data	Kejenuhan:
	(2017)	Perjalana	negara	2. Analisis	Derajat
	(2017)	n Akibat	berkembang,	Kinerja Lalu	kejenuhan
		Tundaan	mengalami	Lintas	pada rute dari
		Lalu	peningkatan	3. Analisis	gerbang
		Lintas	jumlah	Biaya	Perumahan
		Pada	kendaraan	4. Parameter	Bumi
		Perjalana	pribadi yang	• •	Sempaja ke
		nkepusat	signifikan,	Metode	Mall
		Perbelanj	terutama di	penelitian ini	Lembuswana
		aan	kota	menggabungk	bervariasi
		berbasis	Samarinda,	an	tergantung
		Rumah Di	dengan data	pengumpulan	pada kondisi
		Kota	2016	data lapangan,	jam puncak
		Samarind	menunjukkan	analisis	dan tak
		a	93.355 unit	kinerja lalu	puncak,
			kendaraan.	lintas, dan	dengan

Pertumbuhan perhitungan beberapa ini biaya simpang menyebabkan operasional menunjukkan jenuh kemacetan untuk nilai lalu lintas mendapatkan signifikan (DS > 0.85). serius, gambaran yang dipicu menyeluruh 2.Waktu oleh tiga Tunda: Waktu faktor tentang utama: dampak tunda tunda pada peningkatan lalu lintas jam puncak kepemilikan terhadap biaya adalah 318,9 kendaraan, perjalanan di detik/smp terbatasnya Kota untuk arah pembangunan Samarinda. dan pergi infrastruktur 405,6 transportasi, detik/smp dan sistem untuk arah pengoperasian Pada pulang. tak belum jam yang puncak, waktu optimal. Kemacetan tunda masingmengakibatka masing adalah kerugian 146,1 material, detik/smp dan 210,4 seperti pemborosan detik/smp. bahan bakar, 3.Selisih serta kerugian Biaya immaterial, Tundaan: seperti Selisih biaya kelelahan tundaan lalu lintas antara pengemudi jam dan puncak peningkatan dan tak polusi. Jalan puncak adalah antara Rp 8.283.251 Perumahan per hari untuk Bumi arah pergi dan Rp 7.513.086 Sempaja dan Mall

		W	Lembuswana menjadi jalur penting yang perlu dianalisis untuk memahami kerugian yang ditimbulkan akibat kemacetan pada jaringan jalan tersebut		per hari untuk arah pulang.
3	Putu Budiarna ya, Adelino Sia Bere Babo Amaral, I.G.N.N Wismant ara (2021)	Kajian Biaya Perjalana n Akibat Tundaan Lalu Lintas di Ruas Jalan Hasanudd in Denpasar	Jalan Hasanuddin di Denpasar Barat merupakan area dengan tingkat kemacetan yang tinggi, terutama pada jam-jam puncak. Faktor penyebab kemacetan ini meliputi keberadaan pusat perbelanjaan, perkantoran, dan minimnya lahan parkir, yang menyebabkan kendaraan sering berhenti atau	Pengumpulan Data 1.Volume Lalu Lintas: Menghitung jumlah kendaraan yang melewati jalanan dalam periode waktu tertentu menggunakan rumus: 2. Kapasitas Jalan Menghitung kapasitas jalan 3. Derajat Kejenuhan Menghitung derajat kejenuhan Menghitung derajat kejenuhan . 4. Analisis Data Menggunakan data yang diperoleh	Penelitian 1. Kinerja Ruas Jalan Hasanuddin Volume Lalu Lintas: Pagi: 1,470.6 smp/jam Siang: 1,346.4 smp/jam Sore: 1,425.1 smp/jam Kapasitas Jalan Kapasitas maksimum adalah 2,999.8 smp/jam. Kecepatan Kendaraan Ringan: Pagi: 13.66 km/jam Siang: 14.32 km/jam

		Carra 12.62
parkir	untuk	Sore: 12.63
sembarangan.	menganalisis	km/jam
Penundaan	kinerja jalan	Derajat
lalu lintas ini	dan biaya	Kejenuhan:
mengakibatka	perjalanan	Pagi: 0.490
n	akibat	Siang: 0.449
meningkatnya	tundaan.	Sore: 0.475
waktu		2. Biaya
perjalanan dan		Perjalanan
mempengaruh		Biaya Tanpa
i nilai waktu		Tundaan:
kendaraan		Pagi: IDR
serta Biaya		474,442.79
Operasional		Siang: IDR
Kendaraan		477,814.01
(BOK).		Sore: IDR
Peningkatan		474,310.83
volume lalu		Total: IDR
lintas dan		1,426,547.63
adanya		Tundaan Lalu
hambatan di		Lintas:
ruas jalan ini		Pagi: 0.0138
menunjukkan		jam
bahwa perlu		Siang: 0.0141
dilakukan		jam
analisis		Sore: 0.0135
mendalam		ja
terhadap		Biaya Dengan
kinerja jalan		Tundaan:
dan biaya		Pagi: IDR
perjalanan		480,969.82
yang		Siang: IDR
diakibatkan		484,551.19
oleh		Sore: IDR
penundaan.		480,714.02
Penelitian ini		Total: IDR
bertujuan		1,446,235.04
untuk		Kesimpulan
menghitung		Hasil
kinerja Jalan		penelitian
 		1

			Hasanuddin		menunjukkan
					bahwa Jalan
			dan besaran		Hasanuddin
			biaya		
			perjalanan		mengalami
			akibat		kemacetan
			penundaan,		yang
			serta untuk		signifikan,
			memahami		yang
			permasalahan		mengakibatka
			yang ada agar		n penundaan
			dapat		dan
			ditemukan		peningkatan
			solusi yang		biaya
			efektif dalam		perjalanan.
			mengatasi		Kinerja jalan
			kemacetan di		berada pada
			kawasan		tingkat
			tersebut.		pelayanan C
					di jam-jam
					puncak,
					dengan derajat
					kejenuhan
					yang
					menunjukkan
					bahwa volume
					lalu lintas
					mendekati
					kapasitas
					jalan.
4	Benny	Perhitung	Transportasi	1.Metode	Berdasarkan
'	Mochtar	an Biaya	adalah sarana	Analisa Biaya	tujuan yang
	E Ariefin	Tundaan	penting bagi	BBM Akibat	ingin dicapai
	(2022)	Lalu	pembangunan	Tundaan Lalu	dalam
	(2022)	Lintas Di	, terutama di	Lintas	penelitian ini,
		Jalan	1	Berdasarkan	·
			negara		kesimpulan
		Wahid	berkembang	MKJI 1997:	yang dapat
		Hasyim Ii	seperti	a.Data	dibuat adalah
		Kota	Indonesia.	dimasukkan	sebagai
		Samarind	Kebutuhan	yang	berikut. 1.
		a	transportasi	berhubungan	Dari hasil

meningkat dengan geometri dan seiring pertumbuhan arus lalu lintas populasi, yang dilakukan jalan berdampak dengan pada mobilitas bantuan formulir LHR. manusia, barang, dan **b**.Survei Arus jasa. dilakukan lintas Kota selama 4 hari Samarinda, (Minggu, dengan luas Senin, Selasa, 718 km² dan Rabu) pada panjang jalan jam-jam sibuk lalu lintas. nasional 57 provinsi 2.Pengambila km, 76 km, serta n Data: kabupaten/kot a.Pencatatan 658 km. dilakukan masih pada jam mengalami sibuk sekitar kemacetan iam 07.00meskipun 09.00, 11.00jalan-jalan 13.00, 16.00bakar sudah 18.00. dan 19.00-20.00. beraspal. yang Pertumbuhan b.Tipe populasi yang kendaraan cepat dikategorikan menciptakan menjadi ketidakseimba sepeda motor (MC),ngan antara iumlah kendaraan kendaraan dan ringan (LV), pada kapasitas dan kendaraan jalan, berat (HV). yang 3.Perhitungan menyebabkan kemacetan kend. dan **a**.Data volume kecelakaan. lalu lintas

perhitungan, tingkat pelayanan Wahid Hasyim termasuk pada golongan lalu sudah mulai tidak stabil. Perubahan volume lalu lintas sangat mempengaruh besarnya kecepatan perjalanan; biasa dipakai perkotaan untuk disain jalan. 2. Besar biaya bahan kendaraan di akibatkan tundaan lalu lintas setelah melakukan penelitian selama 4 hari yang di ambil jam puncak sebesar Rp.1.048

Jalan Wahid Hasyim II, yang terletak di kawasan CBD, adalah salah satu ruas yang padat, terutama pada jam sibuk, karena dikelilingi pusat perbelanjaan dan fasilitas umum. Ketidaksesuai an antara pengembanga n lahan dan infrastruktur transportasi dapat mengakibatka n tundaan lalu lintas. Tundaan ini berdampak negatif, seperti polusi dan pemborosan biaya perjalanan. Oleh karena itu, penting untuk mengkaji dampak pemborosan biaya akibat

dihitung melalui tabel perhitungan LHR yang sudah ditentukan rumusnya dan dibuat grafiknya. **b**.Mencari nilai kapasitas jalan dan hambatan samping yang telah ditentukan MKJI. 4. Analisis Biaya Konsumsi Bahan Bakar: a.Menghitung biaya konsumsi bahan bakar berdasarkan nilai kecepatan arus bebas. derajat kejenuhan, dan waktu tempuh. **b**.Menggunak an rumus yang ditentukan dalam MKJI 1997 untuk menghitung

biaya

			tundaan lalu	konsumsi	
			lintas untuk	bahan bakar	
				akibat tundaan	
			meningkatkan kinerja sistem		
				laiu iiiitas.	
			transportasi di		
	G i	A 1' '	Samarinda.	1 4 1''	1 77'
5	Gusti	Analisis	Jalan Imam	1.Analisis	1. Kinerja
	Ngurah	Kinerja	Bonjol di Kota	Kinerja Ruas	Ruas Jalan
	Gede	Ruas	Denpasar	Jalan	Tingkat
	Agung	Jalan Dan	memiliki	Menggunakan	Pelayanan:
	Indrayan	Biaya	peran strategis	parameter	Segmen 1:
	a, D.M.	Perjalana	sebagai jalur	derajat	Level C (arus
	Priyanth	n Akibat	penghubung	kejenuhan	stabil,
	a	Tundaan	antara Kota	(DS) dan	kecepatan
	Wedaga	Pada	Denpasar dan	tingkat	dibatasi oleh
	ma(2013	Ruas	Kabupaten	pelayanan	kondisi lalu
)	Jalan (Badung, serta	(LOS) untuk	lintas).
		Studi	mendukung	menilai	Segmen 2:
		kasus:	pengembanga	kinerja ruas	Level C (arus
		Segmen	n pariwisata.	jalan.	stabil,
		Simpang	Sebagai jalan	2.Analisis	kecepatan
		Gunung	kolektor	Biaya	dibatasi oleh
		Soputan-	primer,	Perjalanan	kondisi lalu
		Simpang	fungsinya	Menghitung	lintas).
		Teuku	sangat penting	biaya	2. Biaya
		Umar	dalam	perjalanan	Perjalanan
		Barat)	melayani arus	dengan	Akibat
		,	lalu lintas	formula yang	Tundaan Lalu
			yang besar.	mengacu pada	Lintas
			Namun,	selisih biaya	Biaya
			kenyataannya	perjalanan	Perjalanan:
			jalan ini sering	sebelum dan	Segmen 1: Rp
			mengalami	sesudah	36.680,87
			kepadatan	pertambahan	Segmen 2: Rp
			kendaraan	volume lalu	16.659,83
			akibat	lintas dan	Total Biaya
			berbagai	hambatan	Perjalanan:
			hambatan	samping.	Rp 53.340,70
			samping	- 3	per hari
			seperti		P
			Береги		

			kendaraan		Total Biaya
			yang masuk		Perjalanan Per
			dan keluar,		Tahun: Rp
			kendaraan		14.081.945,40
			berhenti,		3. Kesimpulan
			pejalan kaki,		-
					Kinerja jalan I
			dan parkir di		Gusti Ngurah Rai pada
			tepi jalan. Hal		*
			ini		kedua segmen
			mengakibatka		menunjukkan
			n akumulasi		tingkat
			beban lalu		pelayanan C,
			lintas,		dengan
			penumpukan		dampak
			kendaraan,		signifikan dari
			tundaan waktu		tundaan lalu
			perjalanan,		lintas terhadap
			dan		biaya
			menurunnya		perjalanan
			tingkat		
			pelayanan		
			jalan. Oleh		
			karena itu,		
			perlu upaya		
			untuk		
			mengatasi		
			masalah ini		
			guna		
			meningkatkan		
			efisiensi dan		
			keamanan lalu		
			lintas di Jalan		
			Imam Bonjol.		
6	I Gusti	Analisis	Jalan Imam	Data primer	Data volume
	Ngurah	Kinerja	Bonjol di Kota	dan sekunder	lalu lintas
	Gede	Ruas	Denpasar	dikumpulkan,	diperoleh
	Agung	Jalan Dan	berfungsi	termasuk:	melalui survei
	Indrayan	Biaya	sebagai jalur		selama 12
	a	Perjalana	penghubung	Volume Lalu	jam. Data
	(2013)	n Akibat	penting antara	Lintas:	geometrik,
		•			

Tundaan Kota Melalui survei kecepatan Pada Denpasar dan selama 12 jam perjalanan, Ruas dan hambatan Kabupaten pada jam Jalan, Badung, serta puncak. samping juga (Studi memiliki Data dikumpulkan. kasus: peranan Geometrik Analisis Jalan: Kineria Ruas Segmen strategis Simpang dalam Mengamati Jalan pengembanga kondisi fisik Arus Lalu Gunung Lintas: n pariwisata. ruas jalan. Soputan-Klasifikasi Volume Simpang Kecepatan Teuku kendaraan jalan ini Perjalanan: Umar adalah sebagai Menggunakan pada jam jalan kolektor Barat) metode puncak. primer, Moving Car Kapasitas menghubungk Observer. Jalan: an kota Hambatan Perhitungan jenjang kedua Samping: kapasitas dengan kota Mengidentifik menunjukkan 2883,56 jenjang kedua asi faktorlainnya. faktor yang smp/jam. Meskipun mempengaruh Derajat demikian, arus lalu Kejenuhan: jalan ini sering lintas. Dihitung DS = mengalami Data Q/C = 0.8863. Demografis: kepadatan Analisis Biaya kendaraan Dari sumber Perjalanan akibat sekunder Menggunakan hambatan seperti Badan rumus untuk samping Pusat menghitung Statistik. seperti biaya kendaraan **Analisis** perjalanan Kinerja Ruas akibat tundaan masuk yang dan keluar. Jalan: yang kendaraan Menghitung menunjukkan henti, pejalan derajat total biaya kaki, kejenuhan, dan perjalanan Rp. 428.542.828,4 parkir di tepi kapasitas 5/tahun. jalan. jalan, dan Akibatnya,

			terjadi	tingkat	Simpular dan
			akumulasi	tingkat	Simpulan dan Saran
				pelayanan.	
			beban arus	Analisis Biaya	Simpulan
			lalu lintas	Perjalanan:	Kinerja ruas
			yang	Menggunakan	jalan Imam
			menyebabkan	rumus untuk	Bonjol
			penumpukan	menghitung	menunjukkan
			kendaraan,	biaya	tingkat
			tundaan lalu	perjalanan	pelayanan E.
			lintas, antrian,	akibat	Biaya
			dan	tundaan.	perjalanan
			penundaan		akibat tundaan
			waktu		mencapai Rp.
			perjalanan.		428.542.828,4
			Hal ini		5/tahun.
			mengakibatka		
			n penurunan		
			tingkat		
			pelayanan di		
			ruas Jalan		
			Imam Bonjol.		
7	Yusuf	Analisis	Transportasi	Survei	Data yang
	Aulia	Biaya	merupakan	Geometrik:	Dikumpulkan:
	Lubis	Kemaceta	elemen	Mengukur	Meliputi
	(2016)	n	penting untuk	lebar jalan dan	volume lalu
		Kendaraa	kehidupan dan	trotoar di	lintas,
		n Di Jalan	perkembanga	lokasi	kecepatan
		Setia	n ekonomi,	penelitian	kendaraan,
		Budi	sosial, dan	menggunakan	dan biaya
		(Studi	mobilitas	meteran.	operasional
		Kasus	penduduk. Di	Survei Arus	kendaraan.
		Depan	kota-kota	Lalu Lintas:	Metode
		Sekolah	besar	Mencatat	Analisis:
		Yayasan	Indonesia,	jumlah	Menggunakan
		Pendidika	termasuk	kendaraan	metode PT.
		n	Medan,	berdasarkan	Jasa Marga
		Shafiyyat	masalah	jenis (sepeda	dan LAPI ITB
		ul		motor, mobil,	untuk
		Amaliyya	utama yang dihadapi	bus, truk, dll.)	menghitung
		Amanyya	adalah	*	mengintung
			auaiaii	dengan	

h)	kemacetan	interval waktu	biaya
(YPSA)	lalu lintas.	per jam.	kemacetan.
	Menurut	Survei	
	Tamin (2000),	Kecepatan:	
	kemacetan	Mengukur	
	menyebabkan	kecepatan	
	kerugian besar	kendaraan	
	bagi pengguna	dengan	
	jalan, seperti	pengamatan	
	pemborosan	langsung	
	waktu, bahan	menggunakan	
	bakar, tenaga,	mobil gerak,	
	kenyamanan,	diambil setiap	
	dan	15 menit.	
	peningkatan		
	polusi.	Analisis	
	Kemacetan	dilakukan	
	terjadi ketika	menggunakan	
	volume lalu	metode yang	
	lintas	dikembangka	
	melebihi	n oleh PT. Jasa	
	kapasitas	Marga dan	
	jalan, yang	LAPI ITB	
	menyebabkan	untuk	
	tundaan dan	menghitung	
	waktu	biaya	
	perjalanan	kemacetan	
	lebih lama,	berdasarkan	
	sehingga	data yang	
	meningkatkan	diperoleh.	
	biaya		
	transportasi.		
	Sugiyanto		
	(2007)		
	mengungkapk		
	an bahwa		
	pengurangan		
	kemacetan		
	adalah		
	prioritas		

dalam kebijakan transportasi karena dampak ekonominya yang signifikan. Penyebab kemacetan sering kali adalah jumlah kendaraan yang berlebihan dan perilaku angkutan umum yang tidak tertib, seperti berhenti sembarangan. Hal ini mengakibatka n penggunaan lajur jalan yang tidak efektif. Biaya kemacetan berkaitan dengan kecepatan, aliran lalu lintas, dan biaya operasional kendaraan. Ketika kecepatan

			menurun		
			akibat		
			kemacetan,		
			biaya		
			operasional		
			meningkat.		
			Penelitian ini		
			bertujuan		
			untuk		
			menghitung		
			biaya		
			kemacetan di		
			Jalan Setia		
			Budi depan		
			sekolah		
			Shafiyatul		
			Amaliyah		
			dengan		
			membandingk		
			1.		
			an biaya operasional		
			kendaraan		
			dalam kondisi		
			normal dan		
			saat		
			mengalami		
			kemacetan.		
8	Sarwanta	Analisis	Pembangunan	Analisis	Berdasarkan
	(2015)	Biaya	di berbagai		penelitian
		Kemaceta	negara, baik		mengenai
		n Di Ruas	yang sudah	Biaya	biaya
		Jalan	maju maupun	Operasional	kemacetan di
		Kota	yang sedang	Kendaraan:	ruas jalan
		Bandung	berkembang,	Menghitung	Kota
			bertujuan	total biaya	Bandung,
			untuk	berdasarkan	berikut adalah
			meningkatkan	komponen	hasil yang
			kesejahteraan	seperti bahan	diperoleh:
			masyarakat.	bakar,	•
	<u> </u>		<u> </u>	<u>'</u>	

Salah Biaya satu pelumas, dan 1. indikator pemeliharaan. Kemacetan keberhasilan Kecepatan per Segmen pembangunan Rata-rata: Penelitian dilakukan sangat Menghitung dipengaruhi kecepatan pada Jalan Soekarno oleh perjalanan berdasarkan transportasi, Hatta di antara yang berperan waktu simpang Moh. dan penting dalam jarak Toha yang dan dinamika ditempuh. simpang Pasir pembangunan Biaya Koja. Biaya Di daerah Kemacetan: kemacetan perkotaan, yang dialami Menghitung kendaraan oleh biaya pribadi seperti kemacetan kendaraan mobil dan yang dialami selama 12 jam sepeda motor setiap segmen (06.00)mendominasi berdasarkan 18.00) pada moda volume lalu masingtransportasi, lintas dan masing namun dengan waktu segmen adalah sebagai pola angkutan perjalanan. umum berikut: yang masih Metodologi tradisional, Perhitungan Segmen Moh. hal ini Menggunakan Toha menyebabkan model untuk Cibaduyut: Rp menghitung 59.765.272 biaya sosial tinggi. biaya Segmen yang Masalah kemacetan Cibaduyut Moh. Toha: transportasi dengan perkotaan, formula yang Rp seperti mempertimba 77.678.672 kemacetan, ngkan Segmen parkir, kecepatan, Cibaduyut volume angkutan Kopo: Rp umum, polusi, kendaraan, 109.225.398 dan ketertiban dan nilai (tertinggi) lalu lintas, waktu

memiliki Segmen Kopo perjalanan. dampak Data hasil Cibaduyut: negatif yang survei dan Rp signifikan. pengamatan 73.421.072 Kota digunakan Segmen Kopo untuk estimasi Bandung, Pasir Koja: biaya dengan Rp 34.437.869 populasi kemacetan. sekitar 2,4 juta Segmen Pasir jiwa, juga Koja – Kopo: mengalami Rp kemacetan 33.612.213 yang (terendah) berlangsung 2. Analisis setiap Volume Lalu hari. Pemerintah Lintas setempat Volume lalu belum lintas puncak menemukan terjadi pada kebijakan segmen yang efektif Cibaduyut untuk Kopo dengan 6324 menciptakan total sistem kendaraan transportasi pada pagi hari dan 6487 yang aman, kendaraan nyaman, dan efisien. Oleh pada sore hari. Volume karena itu. penulis terendah tertarik untuk terjadi pada menganalisis segmen Cibaduyut biaya kemacetan di Moh. Toha dengan 4413 Bandung, kendaraan. yang diharapkan 3. Kecepatan dapat Rata-rata memberikan Kecepatan masukan bagi rata-rata

pihak terkait perjalanan dan pada segmenmeningkatkan segmen yang pemahaman diteliti masyarakat menunjukkan variasi tentang aktivitas signifikan, dengan transportasi yang lebih segmen bijak. Cibaduyut Kopo mencatat kecepatan terendah, yang berkontribusi biaya pada operasi kendaraan lebih yang tinggi. 4. Rekomendasi Penelitian ini merekomenda sikan beberapa langkah untuk mengurangi kemacetan, antara lain: Pembatasan penggunaan kendaraan pribadi. Perbaikan fasilitas transportasi publik. Pengaturan fungsi jalan

		<u> </u>		<u> </u>	
					untuk
					meningkatkan
					kapasitas.
					Kesimpulan
					Biaya
					kemacetan
					yang tinggi di
					Kota Bandung
					menunjukkan
					perlunya
					perhatian dari
					pemerintah
					kota untuk
					memperbaiki
					kinerja ruas
					jalan dan
					kebijakan
					transportasi
					yang lebih
					efektif.
9	Emmi	Analisis	Penelitian ini	Metode Studi	Hasil
	Desniati	Kinerja	berfokus pada	Kasus:	Penelitian
	1)	Ruas	analisis	Penelitian ini	1.Volume
	Rahayu	Jalan dan	kemacetan di	menggunakan	Lalu Lintas:
	Sulistyor	Biaya	Jalan	pendekatan	Data volume
	ini2) Ika	Perjalana	Pangeran	studi kasus	lalu lintas
	Kustiani	n akibat	Antasari,	untuk	menunjukkan
	3)	Tundaan	Bandar	menganalisis	adanya
	(2019)	pada Ruas	Lampung.	kinerja ruas	peningkatan
		Jalan	Pertumbuhan	jalan tertentu.	yang
		(Studi	kota dan	1.Survei	signifikan
		Kasus Jl.	aktivitas	Lapangan	pada jam-jam
		Pangeran	ekonomi yang	a.Data	puncak.
		Antasari,	meningkat	geometrik	Contohnya,
		Bandar	menyebabkan	jalan	pada arah
		Lampung)	volume lalu	b.Data volume	Barat, volume
			lintas	lalu lintas	tertinggi
			melebihi	c.Data waktu	mencapai
			kapasitas	tempuh	3.416
			jalan.	perjalanan	smp/jam,
				•	

d.Data sedangkan Meskipun ada arah pembangunan hambatan pada flyover, Timur samping kemacetan 1.Analisis mencapai masih terjadi, kinerja 3.441,3 ruas terutama pada jalan smp/jam. dilakukan jam sibuk. Kecepatan Penelitian ini dengan Perjalanan: bertujuan menggunakan untuk standar 2.Kecepatan mengidentifik perhitungan perjalanan Manual asi penyebab pada saat jam kemacetan, Kapasitas sibuk sangat Jalan mengevaluasi rendah, Indonesia berkisar kinerja jalan, (MKJI) 1997. 7,5 dan antara menghitung 2.Perhitungan km/jam biaya nilai 16,4 hingga perjalanan kecepatan km/jam, jauh stabil bawah akibat tundaan dan di yang terjadi. kecepatan standar Hasil dengan kecepatan penelitian tundaan untuk jalan diharapkan menggunakan fungsi arteri memberikan Model sekunder yang Greenshield. wawasan idealnya untuk 3.Perhitungan minimal 30 perbaikan km/jam. Biaya kebijakan Operasional **Tingkat** transportasi di Kendaraan Pelayanan Bandar (BOK) untuk Jalan: kendaraan Lampung. ringan dan 3.Tingkat berat pelayanan menggunakan (LOS) untuk metode dari ruas Jalan Pangeran LAPI-ITB dan Dinas Lalu Antasari Lintas berada pada level D (V/C > Angkutan

		T.1	0.0)
		Jalan	0.8), yang
		(DLLAJ).	menunjukkan
			kondisi
			mendekati
			jenuh dan
			tidak stabil.
			Biaya
			Perjalanan:
			4.Biaya
			perjalanan
			akibat tundaan
			lalu lintas
			untuk arah
			Pangeran
			Antasari -
			Gajah Mada
			adalah Rp.
			625.863.840
			per tahun.
			Untuk arah
			Gajah Mada -
			Pangeran
			Antasari,
			biaya
			perjalanan
			akibat tundaan
			mencapai Rp.
			845.009.609
			per tahun.
			Jika
			diasumsikan
			panjang jalan
			Pangeran
			Antasari
			adalah 4,8 km,
			total biaya
			•
			perjalanan
			tahunan untuk
			kedua arah

					menjadi Rp. 3.004.144.516 dan Rp. 4.056.046.123 . Hambatan Samping:
					5.Hambatan samping berkontribusi signifikan terhadap kemacetan, dengan 640,2 kejadian/hari akibat aktivitas seperti parkir di badan jalan dan kendaraan masuk-keluar dari lahan.
10	A. A. Ngurah Agung Jaya Wikrama (2017)	Kajian Biaya Perjalana n Akibat Tundaan Lalu Lintas Di Ruas Jalan Kartika Plaza Kabupate n Badung	Jalan Kartika Plaza di Kabupaten Badung, yang merupakan jalan kolektor sekunder dengan masalah tundaan lalu lintas yang tinggi, terutama pada jam-jam sibuk. Penyebab tundaan	Analisis Kinerja Jalan 1.Arus Lalu Lintas: Menghitung arus lalu lintas pada jam-jam puncak. Kapasitas Jalan dan Derajat Kejenuhan: Menggunakan rumus untuk menentukan tingkat pelayanan	1. Analisis Kinerja Jalan Arus Lalu Lintas: Jam puncak terjadi antara pukul 16:45 hingga 17:45 dengan arus lalu lintas sebesar 1.232,3 smp/jam. Kapasitas Jalan: Kapasitas aktual ruas

meliputi Jalan Kartika jalan keberadaan berdasarkan Plaza adalah arus dan 1.627,88 pusat perbelanjaan, kapasitas. smp/jam. mal, 2. Analisis Derajat tempat wisata, Biaya Kejenuhan: sekolah, hotel, Perjalanan Derajat restoran, dan Nilai Waktu kejenuhan toko-toko di Kendaraan: (DS) dihitung sekitar jalan Dihitung sebesar 0,76, tersebut. berdasarkan yang Tundaan nilai menunjukkan sering terjadi pendapatan bahwa jalan **PDRB** beroperasi di pagi hari dari Kabupaten dalam kondisi saat orang mendekati berangkat ke Badung. sekolah dan Biaya kapasitas, kantor. Operasional dengan serta Kendaraan pada siang dan tingkat sore hari saat (BOK): pelayanan pulang kerja Menggunakan jalan berada dan aktivitas metode **PCI** pada level D. pariwisata. untuk Studi ini kendaraan 2. Analisis Biaya bertujuan ringan dan metode Perjalanan untuk DLLAJ untuk menghitung Nilai Waktu Kendaraan: kinerja Jalan sepeda motor. Kartika Plaza Biaya dan biaya Perjalanan Dihitung perjalanan Akibat berdasarkan timbul Tundaan: data PDRB. yang akibat nilai waktu Menghitung tundaan. selisih biaya rata-rata Selain itu, perjalanan kendaraan penelitian ini antara kondisi adalah: juga berfokus arus bebas dan Sepeda kondisi pada saat Motor: Rр identifikasi tundaan 9.202,96/jam masalahterjadi.

1.1	T7 1
masalah yang	Kendaraan
ada di ruas	Ringan: Rp
jalan tersebut	11.503,69/jam
untuk	Kendaraan
menemukan	Berat Bus: Rp
solusi yang	63.270,34/jam
tepat. Hasil	Kendaraan
penelitian	Berat Truk:
diharapkan	Rp
dapat	13.329,25/jam
memberikan	Biaya
wawasan	Operasional
tentang	Kendaraan
dampak	(BOK):
peningkatan	().
volume lalu	Menggunakan
lintas dan	metode PCI
hambatan	dan DLLAJ,
samping	diperoleh
terhadap	BOK untuk:
_	
waktu tempuh dan biaya	Sepeda Motor: Rp
J	Motor: Rp 126.594
perjalanan.	
	(BOK0), Rp
	164.426
	(BOK1)
	Kendaraan
	Ringan: Rp
	992.108
	(BOK0), Rp
	1.259.352
	(BOK1)
	Kendaraan
	Berat Bus: Rp
	2.773.126
	(BOK0), Rp
	3.606.117
	(BOK1)
	Kendaraan
	Berat Truk:

Rp 2.661.474 (BOK0), Rр 3.461.777 (BOK1) Biaya Perjalanan Akibat Tundaan: Total biaya perjalanan akibat tundaan di Jalan Kartika Plaza adalah Rp 285.624 per hari atau Rp 104.252.765 per tahun. Kesimpulan Hasil penelitian menunjukkan bahwa jalan mengalami tingkat kejenuhan yang signifikan pada jam puncak, yang berdampak pada peningkatan biaya perjalanan akibat tundaan lalu lintas.

2.2 Konsep Dasar Lalu Lintas

2.2.1 Definisi Lalu Lintas

Lalu lintas merujuk pada pergerakan kendaraan dan pejalan kaki di jalan serta ruang publik lainnya. Ini mencakup berbagai moda transportasi, seperti mobil, sepeda, bus, dan pejalan kaki. berbagai faktor, termasuk infrastruktur, kebijakan transportasi, dan perilaku pengguna jalan, dapat memengaruhi kondisi lalu lintas.

2.2.2 Komponen Lalu Lintas

- Pengguna Jalan : Meliputi pengemudi, penumpang, pejalan kaki, dan pengendara sepeda. Setiap kelompok ini memiliki perilaku dan kebutuhan yang berbeda dalam konteks lalu lintas.
- Kendaraan: Terdiri dari berbagai jenis kendaraan yang digunakan untuk perjalanan, seperti mobil pribadi, angkutan umum, truk, dan sepeda motor.
 Ciri-ciri kendaraan ini dapat memengaruhi aliran lalu lintas.
- Infrastruktur: Meliputi jalan, jembatan, persimpangan, dan fasilitas transportasi lainnya yang mendukung pergerakan. Kualitas dan desain infrastruktur sangat berpengaruh terhadap kelancaran lalu lintas.

2.2.3 Volume Lalu Lintas

Volume lalu lintas adalah jumlah kendaraan yang melalui suatu ruas jalan pada periode waktu tertentu, Didalam suatu perlintasan dikenal volume lalu lintas harian atau sering juga disebut lalu lintas harian rata-rata (LHR) yaitu jumlah kendaraan yang lewat secara rata-rata dalam sehari (24 jam) pada suatu ruas jalan tertentu, (Yusuf Aulia Lubis, 2016). dan dapat di rumuskan sebagai berikut :

$$Q = \frac{N}{T}$$
 Persamaan (2.1

Dimana:

Q = volume lalu lintas (kend/jam).

N = jumlah kendaraan yang melalui

Titik tersebut interval T

T = interval waktu pengamatan /jam

2.2.4 Kapasitas Jalan

Kapasitas jalan adalah arus lalu lintas maksimum melalui suatu titik di jalan yang dapat dipertahankan per satuan jam pada kondisi tertentu. Kapasitas dinyatakan dalam satuan mobil penumpang (smp) sebagai berikut (MKJI. 1997):

$$C = Co \times FCw \times FCsp \times FCsf \times FCcs$$
 Persamaan (2.2)

Dimana:

C = Kapasitas sesungguhnya (smp/jam).

Co = Kapasitas dasar (ideal).

FCw = Faktor penyesuaian lebar jalan.

FCsp = Faktor penyesuaian pemisah arah.

FCsf = Faktor penyesuaian hambatan samping.

FCcs = Faktor penyesuaian ukuran kota.

2.2.5 Kecepatan Dan Waktu Tempuh

Kecepatan tempuh adalah kecepatan rata-rata arus lalu lintas di hitung dari Panjang jalan dibagi waktu tempuh rata-rata kendaraan yang melalui ruas jalan. termasuk waktu berhenti, macet dan sebagainya, kecepatan rata-rata ruang dari kendaraan (LV) sepanjang segmen jalan dapat di tulis dengan persamaan sebagai berikut:

$$TT = \frac{L}{V}$$
 Persamaan (2.3)

Dengan:

TT = Waktu tempuh rata-rata LV sepanjang segmen

V = kecepatan rata-rata ruang(km/jam)

L = Panjeng segmen (km)

2.2.6 Waktu Tempuh Ruas Jalan Perkotaan

Waktu tempuh (TT) adalah waktu rata-rata yang dipergunakan kendaraan untuk menempuh segmen jalan dengan panjang tertentu, termasuk tundaan, waktu henti, waktu tempuh rata-rata kendaraan didapat dari membandingkan panjang segmen jalan L (km) (MKJI 1997). Hubungan antara kecepatan (V) dan waktu tempuh (TT), dinyatakan dalam persamaan berikut ini :

$$TT = \frac{L}{V}$$
 Persamaan (2.4)

Keterangan:

TT = Waktu tempuh rata-rata LV Panjang segmen (jam)

L = Panjang segmen (km)

V = Kecepatan rata-rata LV (km/jam)

2.2.7 Kecepatan Arus Bebas

Kecepatan arus bebas (FV) dapat didefinisikan sebagai kecepatan pada tingkat arus nol, yaitu kecepatan yang akan dipilih pengemudi jika mengendarai kendaraan bermotor tanpa dipengaruhi oleh kendaraan bermotor lainnya di jalan

$$FV = (FVO + FVW) \times FFVSF \times FFVCS$$
 Persamaan (2.5)

Dimana:

FV = Kecepatan arus bebas sesungguhnya (km/jam).

FVo = Kecepatan arus bebas dasar kendaraan ringan (km/jam).

FVw = Penyesuaian lebar jalur lalu lintas efektif (km/jam).

FFVSF = Faktor penyesuaian kondisi hambatan samping.

FFVRC = Faktor penyesuaian untuk ukuran kota.

2.2.8 Kecepatan Arus Bebas Dasar (FVo)

(Menurut MKJI 1997), kecepatan arus bebas dasar yaitu kecepatan arus bebas segmen jalan pada kondisi ideal tertentu (geometric,pola arus lalu lingtas dan faktor lingkungan). Untuk menentukan kecepatan arus bebas dasar kendaraan ringan dapat di lihat pada Tabel 2.2 bawah ini.

Tabel 2. 2 Kecepatan Arus Bebas Dasar (FVo) Untuk Jalan Perkotaan.

	FV.(Km/Jam)			
Tipe jalan	Kendaraan	Kendaraan	Sepeda	Seluruh
	ringan	berat	motor	kendaraan
				rata-rata
Enam-jalur terbagi				
(6/2D) atau jalur satu arah	61	52	48	57
(3/.1)				

Empat-jalur terbagi				
(4/2D) atau jalur satu arah	57	50	47	55
(2/.1)				
Empat-jalur tak terbagi				
(4/2 UD)	53	46	43	51
Dua-jalur tak terbagi (2/2				
UD)	44	40	40	42

Sumber: Manual kapasitas jalan Indonesia 1997

2.2.9 Derajat Kejenuhan

Derajat kejenuhan (DS) di definisikan sebagai rasio arus terhadap kapasitas. digunakan sebagai faktor utama dalam penentuan tingat kenirja simpang dan segmen. Nilai derajat kejenuhan menunjukan apakah segmen jalan tersebut mempunyai masalah kapasitas atau tidak, Rumus yang di gunakan untuk menentukan nilai derajat kejenuhan adalah sebagai berikut.

$$DS = \frac{Q}{c}$$
 Persamaan (2.6)

Keterangan:

DS = Derajat kejenuhan

Q = Arus total sesungguhnya (smp/jam)

C = Kapasitas sesungguhnya (smp/jam)

2.2.10 Tingkat Pelayanan

Batasan-batasan nilai dari setiap tingkat pelayanan di pengaruhi oleh fungsi jalan dan dimana jalan tersebut berada. Dengan Tingkat pelayanan yang diperoleh makan dapat ditentukan jalan tersebut masuk dalam tingkat pelayanan tertentu.

Adapun tingkat pelayanan (Los) dilakukan dengan persamaan sebagai berikut.

Los=
$$v/c$$
 Persamaan (2.7)

Keterangan:

Los = Tingkat pelayanan

V = Volume lalu lintas (smp/jam)

C = Kapasitas ruas jalan (smp/jam)

2.3 Tundaan Lalu Lintas

2.3.1 Definisi BiayaTundaan Lalu Lintas

Biaya tundaan lalu lintas adalah biaya tambahan yang muncul akibat waktu perjalanan yang lebih lama, disebabkan oleh peningkatan jumlah kendaraan yang mendekati atau melebihi kapasitas jalan. Tundaan lalu lintas mengacu pada keterlambatan yang dialami oleh pengguna jalan, baik pengemudi maupun pejalan kaki, akibat berbagai faktor yang menghalangi aliran lalu lintas. Tundaan ini dapat diukur berdasarkan waktu yang dihabiskan untuk menunggu atau bergerak dengan kecepatan yang lebih lambat dari biasanya.

2.3.2 Lalu Lintas Harian Rata-Rata LHR

Lalu lintas harian rata-rata adalah jumlah rata-rata lalu lintas kendaraan bermotor yang di catat selama 24 jam sehari untuk kedua jurusan ada dua jenis LHR

yaitu LHR tahunan dan LHR silvia sukirman 1994. Adapun faktor yang mempengaruhi LHR yaitu.

- Waktu dan Hari: LHR dapat bervariasi antara hari kerja dan akhir pekan.
- Cuaca: Kondisi cuaca buruk dapat mengurangi jumlah kendaraan.
- Acara Khusus: Kegiatan seperti konser atau festival dapat meningkatkan LHR.
- Kondisi Jalan: Pembangunan atau perbaikan jalan dapat mengubah pola lalu lintas.

2.3.3 Jenis-Jenis Tundaan Lalu Lintas

- Tundaan tetap (Fixed Delay) adalah waktu yang dihabiskan kendaraan di lampu merah.
- Tundaan variabel (Variable Delay) adalah waktu yang dihabiskan karena kondisi lalu lintas yang berubah-ubah, seperti kemacetan.

2.3.4 Faktor Penyebab Tundaan Lalu Lintas

- Kepadatan Lalu Lintas : Semakin banyak kendaraan yang berada di jalan, semakin besar kemungkinan terjadinya keterlambatan.
- Infrastruktur: Desain jalan yang kurang baik, seperti persimpangan yang tidak efektif atau jalan yang sempit, dapat menyebabkan keterlambatan.
- Peraturan Lalu Lintas: Sinyal lalu lintas atau rambu yang tidak efektif juga dapat berkontribusi pada keterlambatan.

 Perilaku Pengemudi : Tindakan pengemudi, seperti berpindah jalur secara tiba-tiba atau mengemudi dengan kecepatan yang tidak konsisten, dapat mempengaruhi aliran lalu lintas.

2.3.5 Dampak Tundaan Lalu Lintas

Dampak tundaan lalu lintas mengacu pada efek yang disebabkan oleh keterlambatan dalam pergerakan kendaraan di jalan. Tundaan ini dapat memengaruhi berbagai aspek, seperti ekonomi, lingkungan, sosial, dan infrastruktur. Berikut beberapa dampak tundaan lalu lintas :

- Dampak ekonomi adalah keterlambatan lalu lintas dapat mengakibatkan kerugian ekonomi karena waktu yang terbuang, peningkatan konsumsi bahan bakar, dan biaya operasional yang lebih tinggi.
- Dampak lingkungan : Keterlambatan dapat meningkatkan emisi gas rumah kaca serta polusi udara akibat kendaraan yang terjebak dalam kemacetan.
- Dampak kesehatan dan Kesejahteraan : Keterlambatan yang berlangsung lama dapat menimbulkan stres dan ketidaknyamanan bagi pengguna jalan.

Rumus menghitung tundaan-tundaan lalu lintas

```
Biaya Waktu =

Biaya Tundaan = (Waktu Tundaan × Nilai Waktu) Persamaan (2.8)

Biaya Bahan Bakar =

Jarak Tempuh×Konsumsi Bahan Bakar×Harga Bahan Bakar Pers (2.9)

Biaya Pemeliharaan =

Persentase Biaya Pemeliharaan×Total Biaya Perjalanan Pers (2.10)

Total biaya perjalanan =
```

Total Biaya=Biaya Tundaan+Biaya Bahan Bakar+Biaya Pemeliharaan____Pers (2.11)

2.3.6 Pengukuran Tundaan

Pengukuran tundaan lalu lintas adalah cara untuk mengukur waktu yang dibutuhkan kendaraan atau arus lalu lintas untuk berpindah dari satu lokasi ke lokasi lainnya. Tundaan ini bisa dipengaruhi oleh berbagai faktor, seperti kemacetan, sinyal lampu lalu lintas, dan keadaan jalan, Keterlambatan lalu lintas dapat diukur dengan beberapa cara, antara lain:

- Tempuh: Menghitung perbedaan antara waktu tempuh yang normal dan waktu tempuh yang sebenarnya.
- Volume Lalu Lintas: Memantau jumlah kendaraan yang melewati titik tertentu dalam jangka waktu tertentu.
- Survei Pengemudi: Mengumpulkan informasi dari pengguna jalan mengenai pengalaman mereka terkait keterlambatan.

Tabel 2. 3 Pengukuran Tundaan Lalu Lintas.

NO	JENIS TUNDAAN	DESKRIPSI	CONTOH PENGUKURAN
1	Tundaan	Waktu yang dihabiskan	20 detik
	Statis	kendaraan dalam keadaan	(Lampu Merah)
		berhenti.	
2	Tundaan	Waktu tambahan yang	15 detik
	Dinamis	diakibatkan oleh kecepatan	(Kemacetan)
		kendaraan yang bervariasi.	
3	Tundaan	Tundaan Antrean Waktu	10 detik
	Antrean	kendaraan menunggu dalam	(Dipersimpangan)
		antrean.	
4	Tundaan	Total waktu yang dibutuhkan	30 menit
	Perjalanan	untuk perjalanan dari titik	(Jarak 15 km)
		A ke B.	

Penjelasan:

- Tundaan Statis: Ini adalah waktu yang dihabiskan saat kendaraan berhenti, misalnya di lampu merah atau stop sign.
- Tundaan Dinamis : Menunjukkan variabilitas waktu karena perubahan kecepatan atau kondisi lalu lintas.
- Tundaan Antrean : Mengukur waktu yang dihabiskan kendaraan dalam antrean, seperti di persimpangan atau pintu masuk parkir.
- Tundaan Perjalanan : Total waktu yang diambil untuk menyelesaikan perjalanan, termasuk semua jenis tundaan.

2.3.7 Biaya Konsumsi Bahan Bakar

Besar konsumsi bahan bakar dasar dipengaruhi oleh kecepatan dan jenis kendaraan. Untuk menentukan konsumsi bahan bakar yang sebenarnya, nilai dasar ini kemudian disesuaikan dengan faktor-faktor seperti kemiringan jalan, kondisi lalu lintas, kapasitas jalan, dan tingkat kekasaran permukaan jalan. Berikut adalah rumus untuk menghitung BKBB adalah rumus jalan non tol, karna sekitar ruas jalan antara Jl. Prof. Dokter Hamka mengarah ke Jalan Imam Bonjol dan sekitar ruas Jl. Dr. M. Hatta mengarah ke jalan lintas utama Sumatera bukan termasuk jalan tol.

Menghitung Biaya Bahan Bakar:

$$= \frac{\text{Jarak Tempuh(km)}}{\text{Konsumsi Bahan Bakar(km/}} \times \text{Harga Bahan (Rp/1)}$$
Persamaan (2.12)

2.3.8 Biaya Operasional Kendaraan

Biaya Operasional Kendaraan (BOK) adalah biaya yang ekonomi yang terjadi dengan dioperasikannya suatu kendaraan pada kondisinormal untuk suatu tujuan tertentu, Perhitungan Biaya Operasional Kendaraan jenis kendaraan ringan dan berat pada studi ini menggunakan metode PCI. berdasarkan rumus sebagai berikut .

$$VOC = a + b / V + cV^2$$
 persamaan (2.13)

Dimana:

VOC = Biaya operasi kendaraan

V = Kecepatan rata - rata (km/jam)

A = Konstanta, nilainya 24

B.C = Kefisien, dengan nilai b = 596 dan c = 0.00370

Perumusan perhitungan biaya tundaan lalu lintas setelah dijelaskan komponen dari perumusan perhitungan biaya tundaan lalu lintas maka selanjutnya diuraikan bentuk perumusannya sebagai berikut

$$D = \sum Q x (\Delta t x (BOK + NW))$$
 persamaan (2.14)

Dimana:

D = biaya perjalanan. (Rp).

Q = volume kendaraan pada waktu puncak (kend).

 $\Delta t = \text{waktu perjalanan} / \text{waktu tempuh (jam)}$

BOK = Biaya Operasi Kendaraan (Rp/jam).

NW = Nilai waktu perjalanan (Rp/jam).

Sehubungan dengan itu, untuk melihat biaya tundaan yang terjadi maka dilakukan perhitungan selisih biaya perjalanan antara volume lalu lintas pada waktu puncak dengan kecepatan tempuh saat sebelum dan sesudah pertambahan volume lalu lintas dan hambatan samping jalan.

$$D = \sum_{x} Q x ((t1 x (BOK1 + NW1)) - (t0 x (BOK0 + NW0))_{max} per (2.15)$$

Dimana;

Indeks 1 = kondisi setelah pertambahan volume dan hambatan samping jalan.

Indeks 0 = kondisi sebelum pertambahan volume dan hambatan samping jalan.

2.4 Biaya Perjalanan

2.4.1 Definisi Biaya Perjalanan

Biaya perjalanan meliputi semua pengeluaran yang berhubungan dengan transportasi dari satu lokasi ke lokasi lainnya. Ini mencakup biaya langsung dan tidak langsung yang dikeluarkan oleh individu maupun perusahaan. Berikut adalah penjelasan rinci mengenai biaya perjalanan beserta tabel yang menunjukkan komponen-komponennya.

2.4.2 Biaya Tundaan Lalu Lintas

Biaya tundaan lalu lintas merupakan tambahan biaya perjalanan yang harus ditanggung oleh pengguna jalan akibat bertambahnya volume lalu lintas dan waktu perjalanan. Bentuk persamaan biaya perjalanan adalah sebagai berikut

Tc = (Panjang segmen x BOK) = (D x nilai waktu) persamaan (2.16)

Keterangan:

Tc = niaya perjalanan per satu kendaraan (kendaraan ringan)

AD = waktu tundaan

BOK = biaya operasi kendaraan

NW = nilai waktu perjalanan

2.4.3 Komponen Biaya Perjalanan

- Biaya Transportasi ini merupakan komponen utama dari biaya perjalanan, mencakup tiket pesawat, pengeluaran untuk bahan bakar, tarif angkutan umum, dan sewa kendaraan.
- Makanan biaya untuk makanan dan minuman selama perjalanan, baik di restoran maupun untuk konsumsi pribadi.
- Biaya Tambahan ini mencakup pengeluaran untuk aktivitas atau atraksi wisata, parkir, asuransi perjalanan, dan tip.

2.4.4 Faktor Yang Mempengaruhi Biaya Perjalanan

- Tujuan Perjalanan: Biaya perjalanan dapat bervariasi berdasarkan lokasi, dengan tujuan yang lebih jauh atau lebih populer cenderung memiliki biaya yang lebih tinggi.
- Metode Transportasi: Pilihan jenis transportasi yang digunakan (seperti pesawat, kereta, atau mobil) dapat memengaruhi total biaya.
- Durasi Perjalanan: Semakin lama perjalanan berlangsung, semakin besar total pengeluaran yang diperlukan untuk akomodasi dan makanan.

2.4.5 Pengukuran Biaya Perjalanan

Biaya perjalanan dapat dihitung dengan menjumlahkan semua pengeluaran yang berhubungan dengan perjalanan. Hal ini dapat dilakukan dengan mencatat setiap pengeluaran selama perjalanan dan kemudian menjumlahkannya untuk mendapatkan total biaya.

2.5 Faktor-Faktor Yang Mempengaruhi Tundaan

2.5.1 Volume Lalu Lintas

Volume lalu lintas mengacu pada total kendaraan yang melintas selama periode tertentu. Pengaruhnya Ketika jumlah kendaraan melebihi kapasitas jalan, kemacetan akan terjadi. Volume yang tinggi biasanya terlihat pada jam-jam sibuk.

2.5.2 Kapasitas Jalan

Kapasitas jalan adalah jumlah maksimum kendaraan yang dapat melintas dalam jangka waktu tertentu tanpa menyebabkan tundaan. Faktor yang Mempengaruhinya adalah Lebar jalan, jumlah lajur, dan kategori jalan (seperti arteri dan lokal) sangat memengaruhi kapasitasnya. Rumus kapasitas jalan sebagai berikut

$$C = N \times F_s \times F_i \times F_m$$
 persamaan (2.17)

Dimana:

C = Kapasitas jalan (jumlah kendaraan per jam)

N = Julmah lajur yang tersedia

 $\mathbf{F}\mathbf{s} = \mathbf{F}\mathbf{a}\mathbf{k}$ tor pengaruh kecepatan

Fi = Faktor pengaruh Panjang lajur

Fc = Faktor pengaruh kondisi lalu lintas

2.5.3 Tanda Dan Sinyal Lalu Lintas

Tanda serta sinyal lalu lintas berfungsi untuk mengatur arus kendaraan di persimpangan. Masalahnya adalah ketidak berfungsinya atau kesalahan penempatan dapat menimbulkan kebingungan dan tundaan.

2.5.4 Kondisi Cuaca

Pengaruh Cuaca juga bisa menjadi Faktor cuaca seperti hujan, salju, dan kabut dapat mengurangi visibilitas serta daya cengkeram ban, sehingga pengemudi cenderung melaju lebih lambat.

2.5.5 Pekerjaan Jalan

Konstruksi dan perbaikan pekerjaan jalan sering kali mengurangi jumlah lajur yang tersedia, yang dapat menyebabkan tundaan. Harus di lakukan pemberitahuan dan rute alternatif perlu disediakan untuk mengurangi dampak yang ditimbulkan.

2.5.6 Tindakan Pengemudi

Perilaku Pengemudi atau keputusan yang diambil pengemudi, seperti berhenti mendadak atau berpindah jalur secara tiba-tiba, dapat memicu tundaan. Pengemudi harus meningkatkan kesadaran dan pengetahuan mengenai perilaku berkendara yang aman dan efisien sangat penting.

2.5.7 Waktu Dan Hari

Variasi tundaan dapat bervariasi tergantung pada waktu (contohnya, pagi dan sore hari) dan hari dalam minggu (seperti akhir pekan). Pemanfaatan data lalu lintas untuk menganalisis pola dan merencanakan dengan lebih baik.

2.5.8 Fasilitas Transportasi Umum

Ketersediaan transportasi umum yang efisien dapat mengurangi jumlah kendaraan pribadi di jalan. karena infrastruktur transportasi umum dapat membantu mengurangi tundaan.

2.5.9 Rute Alternatif

Ketersediaan rute alternatif yang baik dapat membantu mengurangi beban pada jalan utama. Dan dapat menggunakan teknologi aplikasi navigasi yang menyediakan informasi waktu nyata tentang lalu lintas.