BAB II TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

Tabel 2.1 Penelitian Terdahulu

No	Nama	Tahun	Judul	Metode	Hasil
	Peneliti				
1	Fynnisa,	2024	Analisa	Metode	Hasil analisis
	Muhammad		Kebutuhan	aritmatik,	kebutuhan air
	Irwansyah		Air Bersih	metode	bersih PDAM
			PDAM Tirta	geometri dan	Tirta kualo di
			Kualo Di	metode least	kecamatan datuk
			Kecamatan	aquare.	badar dapat
			Datuk Badar		disimpulkan
					bahwa
					diperkiraan
					jumlah penduduk
					kecamatan datuk
					badar pada tahun
					2041 dengan
					mengunakan
					metode aritmatik
					sebesar 59.595
					jiwa. Dengan
					metode geometri
					81.670 jiwa, dan
					mengunakan
					metode least
					square sebesar
					56.754 jiwa.

2	Elfi Yuliana,	2023	Analisis	Penelitian ini	Bersasarkan
	La harudu,		Kualitas Air	menggunaka	dalam penelitian
	Sitti Kasmiati		Dari	n Penelitian	ini, yaitu air
			Pegunungan	Cesara	gunung lapole
			Lapole Untuk	langsung dan	berdasarkan
			Suplai Air	laboratorium	hasil
			Bersih Bagi		pemeriksaan
			Penduduk		sampel secara
					langsung dan
					memenuhi
					laboratorium
					memenuhi
					persyaratan
					secara fisika,
					kimia dan
					biologi.
3	Verrdy	2022	Analisis	Survey lokasi	Berdasarkan
	Chrisna		Kebutuhan	dan	hasil analisis
	Primandani,		Dan	pengumpulan	untuk memenuhi
	Novi Andhi		Ketersediaan	data untuk	Kebutuhan air
	Setyo		Air Bersih	mengetahui	bersih pada tahun
	Purwono,		Di Wilayah	kondisi	2020 sebesar
	Atiyah Barkah		Pelayanan	lapangan	179.89
			Istalasi	yang	Liter/Detik
			Pengolahan	sebenarnya.	Mengalami
			Air Gunung	Pengelolahan	peningkatan pada
			Tugel	dan	tahun 2045
			PDAM Tirta	pembahasan	menjadi sebesar
			Satria	data,	422.03 liter/detik.
			Banyumas	Kesimpulan	
				dan saran.	

4	Nurfatimah	2023	Analisis	Penelitian ini	Berdasarkan pada
			Kebutuhan	menggunaka	hasil Penelitian
			Air Bersih	n pendekatan	ini kecamatan
			Di	kuantitatik	cakranegara kota
			Kecamatan	dengan	mataram provinsi
			Cakranegara	metode	nusa tengggara
			Kota	deskriptif.	barat yang
			Mataram		terletak antara
					08°33' Lintang
					selatan dan
					116°04'-
					116°10'bujur
					timur
5	I komang	2018	Analisis	Survey	Berdasarkan
	angga		Kebutuhan	lokasi dan	pada hasil
	darmayasa,		Air Bersih	pengumpula	proyeksi
	putu		Masyarakat	n data untuk	pertumbuhan
	aryastana,		Kecamatan	mengetahui	penduduk dengan
	dewi		Petang	kondisi	menggunakan
	rahadiani.			lapangan	analisis jumlah
				yang	penduduk dari
				sebenarnya.	tahun 2010-
				Pengelolaha	2016.kemudian
				n dan	dengan proyeksi
				pembahasan	kebutuhan air.
				data,	
				Kesimpulan	
				dan saran.	
6	Ridha	2018	Analisis	Dengan	Berdasarkan
	Afriyanda,		Kebutuhan	Metodelogi	pada hasil
	Gusti Zulkifli		Air bersih	pengumpula	penelitian ini,

	Mulki, Meta		Domestik di	n data,	kecamatan
	Indah Fitiani.		desa penjajap	metode	pemangkat
	induit i titain.		Kecamatan	analisis,	terletak disebelah
			pemangkat	analisis,	timur ibu kota
			-		
			Kabupaten	proyeksi	kabupaten
			Sambas.	penduduk	sambas atau
				Dan metode	diantara
				analisis	1°05'01''Lintang
				kebutuhan	utara serta
				air bersih	1°12'14'' lintang
					utara dan
					108°54'01''
					bujur timur serta
					109°04'40''
					bujur timur.
7	Eko	2021	Analisis	Menggunaka	Dari hasil analisis
	Walujodjati,Su		Kebutuhan	n Metode	yang telah
	lwanPermana,		dan	Penenelitian	dilakukan adalah
	Hadi Nurhuda		Ketersdiaan	Analisis	besarnya
			Air	Proyeksi	kebutuhan air
				Jumlah	total di Desa
				Penduduk,	Pesawahan
				Analisis	Kecamatan
				Kebutuhan	Tagrogong Kaler
				Air dan	adalah 8, 268
				Ketersediaan	It/dt.
				Air Bersih,	
				Analisis	
				Hidrolika	
				Jaringan Air	
				Bersih.	
				Deisiii.	

8	Hermansyah	2023	Analisis	Menggunaka	Dari hasil
8	Tiermansyan	2023		n Metode	Penelitian
			Program Air		
			Bersih Pada	Penenelitian	Persamaan
			Komplek	Analisis	regresi nilai dapat
			Pemukiman	Proyeksi,	dituliskan sebagai
			Pt. Semen	Pengumpula	y=a+b1X1+b2X2
			Baturaja Tbk,	n data,	+b3X3+c.
			di Baturaja	Pengelolahan	
				data	
				penelitian,An	
				alisis Regresi	
				Linier	
				Berganda.	
9	Salomo	2021	Analisis	Menggunaka	Berdasarkan pada
	Simanjutak,		Kebutuhan	n Metode	hasil proyeksi
	Eben		Bersih Di	Penelitian	Kebutuhan Air
	Oktavianus		Kota Medan	Geografis,	Bersih
	Zai, Michael		Sumatra	Pengumpula	Kebutuhan Air
	Halomoan		Utara.	n data,	Domestik dan
	Tampubolon.			Pengolahan	Non Domestik,
				data,	Dari tahun 2018
				Analisis	(awal
				Data.	perencanaan)
					sampai dengan
					tahun 2025 (akhir
					perencanaan)
					jumlah kebutuhan
					air bersih selalu
					mengalami
					kenaikan tiap
					tahun seiring

					dengan
					bertambahannya
					juga jumlah
					penduduk tiap
					tahun.
10	Tantri Wulan	2023	Analisa	Menggu	Dari hasil
	Dari		Perencanaan	nakan	perhitungan
			Kebutuhan	Metode	penduduk desa
			Dan	pengump	muara payang 5
			Pendistribus	ulan	tahun kedepan
			ian Air	data,	tahun 2028 yaitu
			Bersih Di	metode	1582 jiwa dengan
			Desa Muara	analisa	kebutuhan air
			Payang	data.	bersih 2,183
			Kecamatan		liter/detik.
			Kisam		
			Tinggi		
			Kabupaten		
			OKU		
			Selatan.		

Sumber: Penelitian Terdahulu

2.2 Air

Air merupakan kebutuhan dasar manusia yang selama hidupnya selalu memerlukan air. Dengan demikian besar jumlah penduduk serta laju pertumbuhannya semakin besar pula laju pemanfaat sumber daya air. Untuk dapat memenuhi kebutuhan hidup yang semakin meningkat dierlukan industrialisasi yang dengan sendirinya aka meningkatkan lagi aktivitas penduduk serta beban penggunaan sumber daya air. Bagi manusia, air bersih adalah satu kebutuhan utama. Penyediaan air bersih selain kuatitas, kualitasnya pun juga harus memenuhi syarat. Oleh karna itu perusahaan air minum selalu memeriksa kualitas airnya

sebelum didistribusikan kepada pelanggan agar sesuai dengan baku mutu air yang telah ditetapkan. Air minum dapat diartikan sebagai air yang kualitasnya memenuhi syarat-syarat kesehatan, yang dapat diminum (Heriyanti ibnu, 1997).

Air merupakan salah satu dari ketiga komponen yang membentuk bumi (zat padat, air, atmosfer). Sementara air bersih adalah yang digunakan dalam keperluan sehari-hari oleh makhluk hidup yang memenuhi standar kesehtan dan akan menjadi air minum setelah dimasak terlebih dahulu (Radianta Triadmaja,2008). Menurut peraturan menteri Kesehatan RI No. 492/Menkes/Per/IV/2010 tentang syarat-syarat dan pengawasan kualitas air bersih, air minum adalah air yang melalui proses pengolahan atau tanpa proses pengolahan yang memenuhi syarat kesehatan dan dapat langsung diminum.

Air dapat dikatakan bersih dilihat dari 3 indikator fisik yaitu warna, bau dan rasa. Sementara dalam air minum indikator yang dipakai selain indikator fisik terdapat indikator kimia dan indikator biologi. Dalam indikator kimia parameter yang dipakai berupa pH, total solid, besi, mangan, klorida, seng dan lain-lain. Untuk indikator biologi biasanya indikator yang digunakan berupa ada atau tidaknya bakteri atau kuman di dalam air. Dalam pelayanannya, air minum harus memperhatikan 3K yaitu kualitas, kuantitas, dan kontinuitas. Peningkatan kuatitas air merupakan syarat kedua setelah air, karena semakin maju tingkat hidup seseorang, maka akan semakin tinggi pula tingkat kebutuhan air dari masyarakat tersebut. Untuk keperluan minum maka dibutuhkan air rata-rata sebesar 5 liter/hari, sedangkan secara keseluruhan kebutuhan air di suatu rumah tangga untuk masyarakat indonesia diperlukan sekitar 60 liter/hari (Tri Joko, 2010).

2.3 Sumber air

Sumber air adalah keberadaan air sebagai air baku untuk air bagi kebutuhan hidup manusia, hewan dan tumbuhan dalam mempertahankan kehidupannya (Chatib,1994), sumber air yang dipergunakan untuk kebutuhan air baku diantaranya adalah:

2.3.1 Air Laut

Air laut adalah air dari laut atau samudera. Air laut mempunyai sifat asin, karena mengandung garam NaCI. Kadar garam NaCI dalam air laut 3%, gas-gas

terlarut, bahan-bahan organik dan partikel-partikel takterlarut. Dengan keadaan ini, maka air laut tidak memenuhi syarat untuk air minum.

2.3.2 Air permukaan

Air permukaan terbagi menjadi dua yaitu air sungai dan air danau/waduk.

a) Air Sungai

Dalam penggunaannya sebagai air minum, haruslah mengalami suatu pengolahan yang sempurna, mengingat bahwa air sungai ini pada umumnya mempunyai derajat pengotoran yang tinggi sekali. Debit yang tersedia untuk memenuhi kebutuhan air minum pada umumnya dapat mencukupi.

b) Air Danau/Waduk

Kebanyakan air rawa ini berwarna hitam atau kuning kecoklatan, hal ini disebabkan oleh adanya zat-zat organis yang telah membusuk, misalnya asam humus yang terlarut dalam air yang menyebabkan warna kuning coklat. Dengan adanya pembusukan kadar zra organis tinggi, maka umumnya kadar Fe dan Mn akan tinggi pula dan dalam keadaan kelarutan O₂ kurang sekali (anaerob), maka unsur-unsur Fe dan Mn ini terlarut. Pada permukaan air akan tumbuh algae (lumut) karena adanya sinar matahari dan O₂.

2.3.3 Air Tanah

Air tanah adalah air yang terdapat dalam lapisan tanah atau bebatuan dibawah permukaan tanah pada jalur/ zona jenuh air. Air tanah merupakan salah satu sumber daya air yang keberadaannya terbatas dan kerusakannya dapat mengakibatkan dampak yang luas serta pemulihannya sulit dilakukan. Air tanah berasal dari air hujan dan air permukaan, yang meresap mula-mula ke zona tak jenuh dan kemudian meresap makin dalam hingga mencapai zona jenuh air dan menjadi air tanah. Air tanah berinteraksi dengan air permukaan serta komponen-komponen lain seperti jenis batuan penutup, penggunaan lahan, serta manusia yang dipermukaan.

Menurut Sutrisno (1991), Air tanah terbagi atas :

a) Air Tanah Dangkal

Terjadui karena adanya proses peresapan air dari permukaan tanah. Lumpur akan bertahan, sedemikian pula dengan sebagian bakteri, sehingga air akan jernih tetapi lebih banyak mengandung zat kimia (garam-garam yang terlarut) karena melalui lapisan yang tanah ini berfungsi sebagai saringan. Di samping penyaringan, pengotoran masih terus berlangsung, terutama pada muka air yang dekat dengan muka tanah, setelah menemui lapisan rapat air, air akan terkumpul menjadi air tanah dangkal dimana air tanah ini dimanfaatkan untuk sumber air minum melalui sumumr-sumur dangkal.

b) Air Tanah Dalam

Terdapat sebuah lapisan rapat air yang pertama. Pengambilan air tanah dalam tak semudah pada air tanah dangkal. Dalam hal ini digunakan bor dan memasukkan pipa ke dalamnya sehingga dalam suatu kedalaman akan didapat satu lapis air. Jika tekanan air tanah ini besar, maka air dapat menyembur ke luar dan dalam keadaan ini, sumur ini disebut dengan sumur artetis atau sumur bor. Jika air tidak dapat keluar dengan sendirinya, maka digunakan pompa untuk membantu pengeluaran air.

2.3.4. Air Hujan

Air hujan merupakan air yang jatuh dari awan menuju ke permukaan bumi yang di dlamnya terkandung unsur-unsur bahan kimia akibat pada saat jatuh melalui udara bebas yang mengandung unsur kimia yang mengakibatkan oleh kualitas udara dan pola angin setempat, sehingga kualitas yang dihasilkan kurang memenuhi syarat sebagai sumber air baku untuk air bersih (PH nya rendah dengan sifat Asam).

2.3.5. Mata Air

Adalah air tanah yang keluar dengan sendirinya kepermukaan tanah. Mata air yang berasal dari tanah dalam, hampir tidak terpengaruh oleh musim dan kualitasnya sama dengan keadaan air tanah. Biasanya lokasi mata air merupakan daerah terbuka, sehingga mudah terkontaminasi oleh lingkungan sekitarnya.

2.4 Pengolahan Air Bersih

Tujuan dari dilakukannya pengolahan air bersih untuk menguupayakan agar mendapat air bersih dan sehat sesuai dengan standar mutu air. Proses pengolahan air bersih merupakan proses fisik, kimia, dan bilogi air baku agar memenuhi syarat dapat digunakan sebagai air minum (Mulia, 2005).

Sumber air untuk keperluan domestik dapat berasal dari beberapa sumber, misalnya dari aliran sungai yang relatif masih sedikit terkontaminasi, berasal dari mata air pegunungan, berasal dari danau, berasal dari tanah, ataupun berasal dari sumber lain misalnya seperti air laut. Air tersebut harus terlebih dahulu diolah didalam wadah pengolahan air sebelum didistribusikan kepada pengguna. Variasi sumber air akan mengandung senyawa yang tentu saja berbeda satu sama lainnya, maka sudah wajib bagi pengelola air untuk menjadikan air aman dikonsumsi bagi pengguna, yaitu air yang tidak mengdung bahan berbahaya untuk kesehatan berupa senyawa kimia untuk mikrooganisme (manihar,2007)

2.5 Ketersediaan Air Bersih

Untuk memenuhi ketersediaan air bersih, manusia memperolehnya dengan cara sebagai berikut:

1) Sistem individu

Yaitu sistem penyediaan air secara individu dan biasanya menggunakan cara yang lebih sederhana dan pelayanan yang terbatas, misalnya sistem satu sumur untuk satu rumah tangga.

2) Sistem Untuk Komunitas

Yaitu sistem penyediaan air bersih untuk komunitas di dalam perkotaan dimana pelayanannya secara menyeluruh yaitu untuk penduduk yang berdomisili tetap (domestik) dan tidak tetap (non domenstik) pada dasarnya sistem komunitas mempunyai sarana yang lebih lengkap ditinjau dari sudut teknik maupun pelayanan.

Sesuai dengan Milinium Development Goals (MDG) pedoman yang perlu diketahui selain proyeksi jumlah penduduk dalam ketersediaan air bersih adalah:

• Tingkat pelayanan masyarakat

Cakupan pelayanan air bersih kepada masyarakat rata-rata tingkat nasional adalah 80 % dari jumlah penduduk, dengan rumus:

 $Cp=80\%_x pn.$ (2.1)

Dengan:

Cp= Cakupan pelayanan air bersih (liter/detik),

Pn= Jumlah penduduk pada tahun n proyeksi (jiwa).

• Pelayanan sambungan rumah

Jumlah penduduk yang mendapat air bersih melalui sambungan rumah adalah, dengan rumus:

 $SI=80\%_x Cp$(2.2)

Dengan:

SI= Konsumsi air dengan sambungan rumah (liter/detik),

Cp= Cakupan pelayanan air bersih (liter/detik).

• Sambungan tak langsung atau sambungan bak umum

Sambungan tak langsung atau sambungan bak umum adalah sambungan untuk melayani penduduk tidak mampu dimana sebuah bak umum dapat melayani kurang lebih 100 jiwa atau sekitar 20 keluarga.

Jumlah penduduk yang mendapatkan air bersih melalui sambungan tak langsung. Jumlah penduduk yang mendapatkan air besih sambungan tak langsung atau bak umum dihitung dengan rumus:

 $Sb=20\%_xCp$(2.3)

Dengan:

Sb= Konsumsi air bak umum (liter/detik),

Cp= Cakupan pelayanan air bersih (liter/detik).

• Konsumsi air bersih

Konsumsi kebutuhan air bersih sesusai dengan departemen pemukiman prasarana wilayah, (2002) diasumsikan sebagai berikut:

- a) Konsumsi air bersih untuk sambungan rumah/sambungan langsung sebanyak 140 liter/orang/hari.
- b) Konsumsi air bersih untuk sambungan tak langsung/ bak umum untuk masyarakat kurang mampu sebanyak 30 liter/orang/hari.
- c) Konsumsi air bersih non rumah tangga (kantor, sekolahan, tempat ibadah, industri, pemadam kebakaran dan lain-lain) ditentukan sebesar 15% dari jumlah pemakaian air untuk sambungan rumah dan bak umum dengan rumus:

 $Kn=15\%_x(SI+Sb)$(2.4)

Dengan:

Kn = Konsumsi air untuk non rumah tangga (liter/detik),

SI = Konsumsi air dengan sambungan rumah (liter/detik).

Sb = Konsumsi air bak umum (liter/detik).

2.6 Analisis Kebutuhan Air Bersih

Analisis kebutuhan air untuk masa yang akan datang menggunakan standar-standar perhitungan yang telah ada. Faktor-faktor yang mempengaruhi proyeksi kebutuhan air bersih antara lain seperti jumlah penduduk yang berkembang tiap tahun, tingkat pelayanan, dan faktor kehilangan air. Untuk menganalisis kebutuhan air bersih 15 tahun yang akan datang digunakan metodemetode yang telah dijelaskan sebelumnya. Dari proyeksi petumbuhan penduduk tersebut kemudian diperhitungan jumlah kebutuhan air dari sektor domestik maupun non domestik berdasarkan kriteria (Ditjen Cipta Karya 1996).

2.6.1 Kebutuhan Air Domestik

Kebutuhan air domestik adalah kebutuhan air bersih bagi para penduduk untuk kepentingan sehari-hari. Jumlah kebutuhan didasarkan pada benyaknya penduduk, presentase yang diberi air dan cara pembagian air yaitu dengan:

- 1. Sambungan rumah tangga
- 2. Kran umum

Jumlah sambungan rumah dihitung dari jumlah pelanggan baru, yaitu 5 orang persambungan, sedangkan jumlah kran umumnya didasarkan atas 100 standar yang bisa digunakan serta kriteria pelayanan berdasarkan pada kategori kotanya.

Tabel 2.2 Standar Kebutuhan air domestik

		KATEGORI KOTA BERDASARKAN JUMLAH JIWA				
NO	URAIAN	>1.000.000	500.000 s.d 1.000.000	100.000 s.d 500.000	20.000 s.d 100.000	<20.000
		METRO	BESA	SEDAN	KECIL	DESA
			R	G		
	I	II	III	IV	V	VI
1	Konsumsi unit Sambungan Rumah (SR) liter/orang/hari	190	170	130	100	80
2	Konsumsi unit hidran (HL) liter/orang/hari	30	30	30	30	30
3	Konsumsi unit Non Domestik liter/orang/hari	20-30	20-30	20-30	20-30	20-30
4	Kehilangan air (%)	20-30	20-30	20-30	20-30	20-30
5	Faktor Hari Maksimum	1,1	1,1	1,1	1,1	1,1
6	Faktor jam puncak	1,5	1,5	1,5	1,5	1,5
7	Jumlah jiwa per SR	5	5	5	5	5
8	Jumlah jiwa per H/L	100	100	100	100-200	200
9	Jam operasi	24	24	24	24	24
10	SR:HR	50:50:00 80:20:00	51:50:00 81:20:00	80:20:00	70:30:00	70:30:00

Sumber: Ditjen Cipta Karya, Tahun 2000

2.6.2. kebutuhan Air Non Domestik

Kebutuhan air non domestik adalah kebutuhan air bersih untuk fasilitas-fasilitas umum seperti untuk pendidikan, tempat ibadah, kesehatan danjuga untuk keperluan Komersil seperti untuk perhotelan, kantor, restoran dan lainlain. Selain itu juga keperluan industri, pariwisata, pelabuhan, perhubungan, dan lain-lain. Besar kosumsi non domestik sampau 2004 ditetapkan 10''4 dari kebutuhan domestik.

Tabel 2.3 Kebutuhan Air Non Domestik untuk kategori I,II,III,IV

SEKTOR	NILAI	SATUAN
Sekolah	10	Liter/murid/hari
Rumah Sakit	200	Liter/bed/hari
Puskesmas	2000	Liter/unit/hari
Masjid	3000	Liter/unit/hari
Kantor	10	Liter/pegawai/hari
Pasar	12000	Liter/hektar/hari
Hotel	150	Liter/bed/hari
Rumah Makan	100	Liter/tempatduduk/hari
Komplek Militer	60	Liter/orang/hari
Kawasan Industri	0.2 - 0.8	Liter/detik/hektar
Kawasan Pariwisata	0.1 - 0.3	Liter/detik/hektar

Sumber : Ditjen cipta karya DPU

Tabel 2.4 Kebutuhan Air Non Domestik untuk kategori V (Desa)

SEKTOR	NILAI	SATUAN
Sekolah	5	Liter/murid/hari
Rumah Sakit	200	Liter/bed/hari
Puskesmas	1200	Liter/unit/hari
Masjid	3000	Liter/unit/hari
Mushola	2000	Liter/unit/hari
Pasar	12000	Liter/hektar/hari
Komersial/industry	10	Liter/hari

Sumber : Ditjen cipta karya PDU

Tabel 2.5 Kebutuhan Air Non Domestik untuk kategori lain

SEKTOR	NILAI	SATUAN
Lapangan Terbang	10	Liter/orang/detik
Pelabuhan	50	Liter/orang/detik
Stasiun KA dan terminal bus	10	Liter/orang/detik
Kawasan industri	0.75	Liter/detik/hektar

Sumber : Ditjen cipta Karya DPU

Pernitungan kebutuhan air bersin meliputi kebutuhan air bersih sektor domestik dan sektor non domestik, yang dihitung berdasarkan analisis proyeksi

jumlah penduduk dan analisis data pertumbuhan terakhir fasilitas-fasilitas sosial ekonomi yang ada pada wilayah perencanaan.

 Total kebutuhan air bersih (Qt) adalah total kebetulan domestik (Qd) ditambah total kebutuhan non domestik (Qn) ditambah 20% kebocoran/kehilangan air dari total rata-rata kebutuhan domestik dan non domestik.

$$Qt = Qd + Qn + 20\% (Qd + Qn)$$
(2.5)

Qt = Total kebutuhan air bersih

Qd = total kebetulan domestik

Qn = total kebutuhan non domestik

 Kebutuhan air harian maksimum (Qm) dihitung berdasarkan kebutuhan air rata-rata dikali dengan faktor pengali 1,16 – 1,25.

$$Qm = 1,15 \times Qt$$
(2.6)

Qm = Kebutuhan air harian maksimum

 Kebutuhan air jam puncak (Qp) dihitung berdasarkan air total dikali dengan faktor pengali 1,65 – 2,00.

$$Qp = 1,75 \text{ x } Qt \dots (2.7)$$

Qp = Kebutuhan air jam puncak

2.7 Faktor yang mempengaruhi pemakaian air antara lain:

1) Iklim

Kebutuhan air untuk mandi, menyiram tanaman, pengaturan udara, dan sebagainya akan lebih besar pada iklim yang hangat dan kering dari pada di iklim yang lembab. Pada iklim yang sangat besar pada iklim yang hangat dan kering dari pada di iklim yang lembab. Pada iklim yang sangat dingin, air mungkin diboroskan di kran-kran untuk mencegah bekunya pipa-pipa.

2) Ciri-ciri penduduk

Pemakaian air dipengaruhi oleh status ekonomi dari pelanggan. Pemakaian per kapita di daerah miskin jauh lebih rendah dari pada di daerah kaya. Di daerah tanpa pembungan limbah, konsumsi dapat sangat rendah hanya sebesar 10 gcpd (40 liter/kapital/hari).

3) Masalah lingkungan hidup

Meningkat perhatian masyarakat terhadap berlebihannya pemakaian sumber daya telah menyebabkan berkembangnya alat-alat yang dapat dipergunakan untuk mengurangi jumlah pemakaian air di daerah pemukiman.

4) Faktor sosial ekonomi

Yaitu populasi, besarnya kota, iklim, tingkat hidup, pendidikan, dan tingkat ekonomi.

2.8 Teori Yang Digunakan Dalam Analisis Data

2.8.1 Perkiraan jumlah penduduk

Proyeksi jumlah penduduk adalah menentukan perkiraan jumlah penduduk pada beberapa tahun mendatang, sesuai dengan periode perencanaan yang diinginkan. Data yang diperlukan adalah jumlah penduduk maupun persentase kenaikan jumlah penduduk raa-rata pertahun yang diperoleh dari analisis data jumlah penduduk, serta rata-rata kenaikan jumlah penduduk pada tahun 2024 terakhir.

Ada 2 rumus untuk menentukan proyeksi jumlah penduduk yang dipakai, yaitu metode geometrik, Aritmatika. Kriteria untuk memilih salah satu metode tersebut dengan menggunakan rumus Standar Deviasi (SD). Standar deviasi harus yang didapat dari proyeksi tidak berbeda jauh dengan data aslinya. Ketiga metode tersebut adalah sebagai berikut:

Metode Geometrik

$$Pn = Po (1+r)_n$$
....(2.8)

Dengan:

Pn = Jumlah penduduk pada tahun n Proyeksi (jiwa),

Po = Jumlah Penduduk pada awal proyeksi (jiwa),

r = Presentase jumlah pertambahan penduduk dibagi selisih waktu dikurangi tahun awal proyeksi (%),

_n = Selisih waktu (tahun)

• Metode Aritmatika

$$P_n = P_0 + K_a (T_n - T_0)$$
....(2.9)

 $K_a = \frac{P2 - P1}{T2 - T1}$...(2.10)

Dengan:

 P_n = jumlah penduduk pada tahun n.

 $P_o = jumlah penduduk.$

Pada tahun awal Tn = Tahun ke _n.

 $T_o = Tahun dasar.$

 $K_a = Konstanta$ aritmatika.

 P_1 = Jumlah penduduk yang diketahui pada tahun ke n.

P₂= Jumlah penduduk yang diketahui pada tahun terakhir.

 T_1 = Tahun ke 1 yang Diketahui.

 T_2 = Tahun ke 2 yang diketahui.